

PB 250, PB 400 / SD 560x Systèmes époxys moussants résilients, durcissant à l'ambiante

Les systèmes PB sont des formulations d'époxy moussant développés pour des productions in situ de mousse basse densité. La densité finale de la mousse ne dépend que du choix initial de la résine. Tous ces systèmes donnent des mousses blanches mais peuvent être colorés à l'aide de pigment compatible époxy.

Associés aux durcisseurs **SD 560x** les époxys moussants **PB 250** et **PB 400** permettent d'obtenir des mousses de densités respectives d'environ 280 et 500 kg/m³. Les mélanges sont de plus grandement facilités par un ratio facile et assez tolérant de 1 pour 1 en volume.

Les mélanges évoluent en deux temps :

- 1 Expansion rapide de la coulée, vitesse indépendante du durcisseur.
- 2 Durcissement lent de la masse

Performances:

Pas de manipulation de micro sphères creuses Adhésion sur de nombreux supports Accepte des supports humides Coulables des résines époxydes en cours de polymérisation Excellente homogénéité de densité

Applications:

Production de mousse époxy
Matériaux d'âme sandwich coulables in situ
Volume de flottabilité
Densification de mousses, nids d'abeille...
Collage de mousses, de bois, de matériaux de constructions poreux
Isolation thermique

Résines époxys moussante PB

		PB 250 PB 400		
Aspect		Liquide thixotrope		
Couleur		Blanc	Blanc	
Viscosité (mPa.s)				
	@ 20 °C	$22\ 000 \pm 4\ 000$	22 000 ± 4 000	
	@ 25 °C	12 000 ± 2 000	12 000 ± 2 000	
	@ 30 °C	7 500 ± 1 500	7 000 ± 1 400	
	@ 40 °C	3800 ± 800	$3\ 000 \pm 600$	
Densité	@ 20 °C	1.10 ± 0.01	1.14 ± 0.01	
Stabilité au stockage		1 an à 15 – 20 °C.		
		Mélanger le conditionnement avant		
		utilisation		

Durcisseurs SD 560x

Aspect / coule	our	SD 5604 Liquide jaune	SD 5602 Liquide jaune		
Aspect / Could	Gui	Liquide jaurie	Liquide jaurie		
Réactivité typ	е	Standard	Lent		
Viscosité (mPa.s) @ 20 °C @ 25 °C @ 30 °C @ 40 °C		4 500 ± 900 2 800 ± 600 1 800 ± 400 900 ± 200	5 000 ± 1 000 3 000 ± 600 2 000 ± 400 1 000 ± 200		
Densité	@ 20 °C	0.99 ± 0.01	0.99 ± 0.01		
Picnomètre NF EN ISO 2811-1					

PB xx0 / SD 560x propriétés des mélanges

PB	SD	Densité après expansion à 20 °C	Dosage en poids	Dosage en volume	Tg 1 max
PB 250	SD 560x	Env 300 kg/m ³	100 / 90 g	1 / 1	60 °C
PB 400	3D 300X	Env 500 kg/m ³	100 / 90 g	1 / 1	60 °C

Paramètres d'exothermie

Conductivité thermique du support

Moule ouvert ou fermé

Température des composants et de la température ambiante

Géométrie, volume et masse de la coulée

Dans le cas de coulée sur stratifié épais en cours de polymérisation, il faudra tenir compte de la chaleur dégagée par la résine de stratification.

Conseils de mise en œuvre

Homogénéiser les résines PB avant dosage, à l'aide d'un agitateur hélicoïdal (type peinture).

Porter une attention particulière aux parois et fond du récipient.

Doser en poids avec la précision adaptée à la masse mise en œuvre

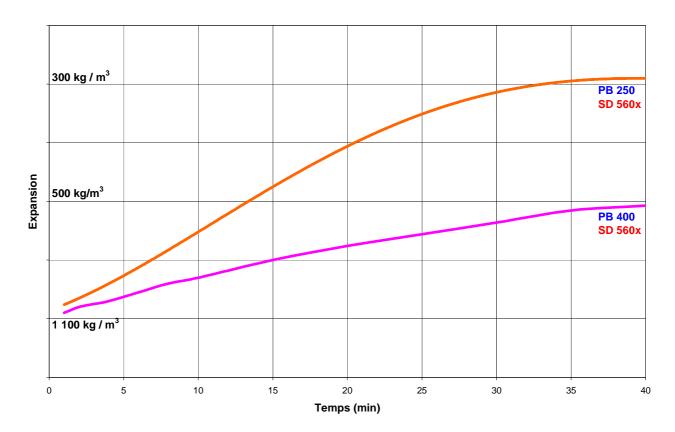
La réaction d'expansion est beaucoup plus rapide que la réaction de polymérisation: les temps de mélange et d'application doivent être les plus courts possibles, surtout avec les faibles densités.

Le temps de travail des mélanges est de 4 minutes maximum.

Lors du mélange de la résine PB et du durcisseur, de l'air est inclus.

Ces bulles peuvent être en grande partie éliminées par passage du mélange à travers un tamis inox d'une maille de 1 à 2 mm

Rapports d'expansion PB xx0 / SD 560x


Densité finale en expansion libre à 20°C		Rapport volumique d'expansion à 20°C	
PB 250	$300 \pm 30 \text{ kg} / \text{m}^3$	x 3.5 environ	
PB 400	$520 \pm 50 \text{ kg} / \text{m}^3$	x 2 environ	

Exemple, si le volume à remplir est de 2 litres, il faut :

2 / 3.5 = 0,57 kg ou 570 g de mélange de PB 250 / SD 560x 2 / 2 = 1 kg ou 1 000 g de mélange de PB 400 / SD 560x

Prévoir 5 à 10 % de mélange supplémentaire pour les pertes et approximations. Attention au problème d'exothermie sur les volumes importants

Vitesse d'expansion à 20 °C

Conductivité thermique des matériaux

Matériaux	Densité (kg / m³)	Conductivité thermique à 20 °C (W.m ⁻¹ .°C ⁻¹)	
Cuivre	8800	380	
Composite Carbone / carbone	1700 – 2000	300	
Aluminium (AU 4G)	2800	140	
Aciers	7800	20 à 100	
Fibre de carbone HR ou HM	1800	200	
Fibre de verre E	2600	1	
Mat verre E / Epoxy 28% fibre vol	1800	0,25	
Fibre d'aramide	1450	0.03	
Béton	2000 à 2500	1 à 1.5	
Plâtre		0.37	
Mat verre E / Epoxy 28% fibre vol	1800	0,25	
PVC expansé (Forex)	650	0.12	
PB 600 mousse époxy	600	0.157	
PB 400 mousse époxy	400	0.130	
PB 250 mousse époxy	250	0.065	
Mousse de polyéthylène extrudée	35 à 150	0.05	
Herex C70.33 C70.75 C70.200	33, 80 et 200	0.030, 0.033 et 0.048	
Airex R82.80 R 82.110	80 et 110	0.037 et 0.040	
Airex R63.80 R63.140	90 et 140	0.034 et 0.039	
Kapex C51	60	0.036	
Thermodurcissables non chargés Epoxy, polyester, phénoliques	1100 à 1300	0.2	
Polyéthylène BD / HD	960	0.25 à 0.34	
Stratifié Verre / epoxy	2000	0.3 à 0.8	
Bois	400 à 700	0.12 à 0.2	
Balsa	100 à 250	0.051 à 0.090	
Polystyrène expansé	20	0.035	
Polystyrène extrudé	28 à 45	0.033 à 0.025	
Air		0.021	

Propriétés mécaniques sur mousse réticulée:

	Ī				· · · ·
		PB 250 /	PB 250 /	PB 400 /	PB 400 /
		SD 5604	SD 5602	SD 5604	SD 5602
Cycles de polymérication		7 jours à	7 jours à	7 jours à	7 jours à
Cycles de polymérisation		23 °C	23 °C	23 °C	23 °C
Compression					
Module	N/mm ²	68	97	131	135
Contrainte au seuil d'écoulement	N/mm ²	3.3	3.5	6.7	6.5
Déformation au seuil	%	8.4	5.8	6.8	6.2
d'écoulement					
Flexion					
Module	N/mm ²	125	120	335	310
Résistance maximum	N/mm ²	3.8	3.3	9.2	8.4
Allongement à l'effort maximum	%	5.5	7.1	6.1	5.4
Cisaillement					
Contrainte de cisaillement	N/mm ²	2	2	3.2	3.5
Transition vitreuse					
Tg1	°C	40	43	41	43
Tg1 max.	°C	60	58	62	63

Essais réalisés sur des éprouvettes de résine pure coulée, sans dégazage préalable, entre des plaques en acier.

Essais réalisés sur des eprouvertes :

Mesures effectuées suivant les normes :

Compression:

NF T 51-101

NF T 51-001

Cisaillement ASTM D 732 - 93 test Punch Tool

Transition vitreuse: ISO 11357-2: 1999 -5 °C / 180 °C sous azote

Tg1 ou Onset: 1er point à 20 °C/mn Tg1 maximum ou Onset : deuxième passage