

SR 8450

Système Bois Epoxy pour conditions tropicales

Système époxy pour la construction navale: collage, stratification et revêtement du bois.

Système adapté aux pays chauds et tropicaux

Dosage simple 2/1 en volume

Temps de travail modulable: 3 durcisseurs disponibles.

Polymérise à température ambiante, surface non poisseuse, brillante.

Adhère sur tous les bois.

Excellente résistance en milieu marin.

Formulation à faible toxicité, peu allergisante. (sans phénol et amines toxiques) Consulter notre manuel bois / époxy

Résine époxy SR 8450

Aspect / couleur		liquide jaune
Viscosité (mPa.s <u>+</u> 100)	à 20 °C à 25 °C	3000 1800
Densité (g/cm 3 ± 0.005)	à 20 °C	1.140

Durcisseurs SD 845x

Duicisseurs 3D 04	JA			
Références		SD 8451	SD 8453	SD 8454
Réactivité		Lent	Standard	Rapide
Application		Stratification, collage, enduits & coulée	Stratification & collage	Revêtement, stratification & collage
Aspect / couleur		liquide jaune	liquide jaune	liquide jaune
Viscosité (mPa.s)	à 20 °C à 25 °C	140 90	610 490	1000 710
Densité (g/cm 3 ± 0.005)	à 20 °C	0.980	1.024	1.035

Systèmes SR 8450 / SD 845x

Viscosité du mélange (mPa.s <u>+</u> 50)			
à 20°C	730	1 200	1 500
à 25°C	500	970	1 100
Dosage en poids	100 g / 45 g	100 g / 45 g	100 g / 45 g
Dosage en volume	100 ml / 50 ml	100 ml / 50 ml	100 ml / 50 ml
	(2/1)	(2/1)	(2/1)

Réactivité des mélanges

Systèmes SR 8450 / SD 845x	SD 8451	SD 8453	SD 8454
Température d'exothermie (°C) sur 500 g	de mélange:		
à 30°C	150	200	210
à 20 °C	35	160	195
Temps pour atteindre l'exothermie sur 50	00 g de mélange :		
à 30 °C	2h 45'	55'	35'
à 20 °C	9 h 00	2 h 40'	70'
Temps pour atteindre 50°C sur 500 g de	mélange		
à 30 °C	1 h 00	38'	22'
à 20 °C	nm	2 h 15'	50'
Hors poussière en film de 500 microns er	nv.:		
à 30 °C	8 h 00	3 h 20'	2 h 20'
à 20 °C	10 - 11 h	5 h 00	3 h 30'
nm : non mesurable			

Polymérisation

Les systèmes **SR 8450** / **SD 8451**, **SD 8453** et **SD 8454** polymérisent à température ambiante.

Optimisation: minimum de 7 jours à 23 °C ou 12 h à 40°C avant mise en service .

Conditionnements

Kits	Résine SR 8450	Durcisseurs SD 845x
696 kg	2 X 240 kg	1 X 216 kg
348 kg	1 X 240 kg	4 X 27 kg
87 kg	2 X 30 kg	1 X 27 kg
15.95 kg	1 X 11 kg	1 X 4.95 kg
7.97 kg	1 X 5.5 kg	1 X 2.47 kg
3.20 kg	1 X 2.2 kg	1 X 1 kg
1.45 kg	1 X 1 kg	1 X 0.45 kg

Toxicité / Etiquetage

Références	Symboles	Danger	Phrases de R isques
References	Oymbole3	Danger	Tillases de Nisques
SR 8450	•	Xi: Irritant	R 36/38: irritant pour les yeux et la peau
	X		R 51/53: toxique pour les organismes
	36		aquatiques, peut entraîner des effets
	12	N : Dangereux pour	R 43: peut entraîner une sensibilisation par
		l'environnement	contact avec la peau
SD 845x		C: Corrosif	R 36/38: irritant pour les yeux et la peau
	* **		R 34 : Provoque des brûlures
			R 43: peut entraîner une sensibilisation par
			contact avec la peau

Classification CEE selon l'Annexe I de la Directive 67 / 548 / CEE

Propriétés mécaniques sur résine pure :

Systèmes		SR 8	8450 / SD	8451	SR 8	8450 / SD	8453	SR	8450 / SD	8454
Cycles de polymérisation		7 jours 23 °C	24 h Tamb	24 h Tamb	7 jours 23 °C	24 h Tamb	24 h Tamb	7 jours 23 °C	24 h Tamb	24 h Tamb
			+ 24 h 40°C	8 h 60°C		+ 24 h 40°C	8 h 60°C		+ 24 h 40°C	8 h 60°C
Traction										
Module	N/mm ²	2230	2530	2420	2750	2620	2510	2800	2600	2580
Résistance maximum	N/mm ²	52	61	55	59	65	63	65	65	64
Résistance à la rupture	N/mm ²	37	49	41	59	52	53	64	59	54
Allongement à l'effort maximum	%	3.0	3.8	3.6	3.6	4.1	4.5	3.4	3.8	4.3
Allongement à la rupture	%	3.9	5.4	8.4	4.0	5.6	7.4	3.7	4.9	8.4
Flexion										
Module	N/mm ²	2630	2840	2740	3075	2740	2820	3030	2970	2850
Résistance maximum	N/mm ²	86	95	90	101	98	99	100	105	100
Allongement à l'effort maximum	%	4.2	4.9	4.8	4.8	5.2	5.5	4.6	5.0	5.6
Allongement à la rupture	%	14.5	15.6	17.2	6.7	13.4	15.2	7.8	13.3	13.3
Compression										
Contrainte seuil d'écoulement	N/mm ²		87			98			104	
Déformation seuil écoulement	%		6.2			6.8			7.4	
Choc Charpy	KJ/m ²	24	34	42	21	33	33	23	31	36
Transition vitreuse										
Tg1	°C	53	58	67	55	65	76	55	62	70

Essais réalisés sur des éprouvettes de résine pure coulée, sans dégazage préalable, entre des plaques en acier.

Mesures effectuées suivant les normes AFNOR:

Traction: NF T51-034
Flexion: NF T51-001
Compression: NF T51-101
Choc Charpy: NF T51-501

Transition vitreuse: DSC Tg 1 = 1° point à 10° C / mn

SR 8450 Application du système Bois Epoxy

Conditions d'atelier

Poste de travail ventilé.

Température ambiante minimum pour le collage: 15°C

Température ambiante minimum pour le revêtement: 18 °C

Risques encourus en cas d'utilisation à trop basse température et forte hygrométrie: imprégnation du support insuffisant, consommation de produit excessive, durcissement lent, pollution du système.

Stockage

Les conditionnements seront stockés à l'abri de l'humidité à 18-25°C. Refermer immédiatement les conditionnements après utilisation, notamment les durcisseurs qui réagissent avec le gaz carbonique et l'humidité. Les produits sont stables au moins un an en emballage d'origine.

Mise en œuvre

Le dosage peut être pondéral (balance +/- 1g) ou volumique (gobelets gradués, seringues).

Mélanger intimement les 2 composants.

Transvaser dans un récipient large et ouvert: bac sec et propre. Les résultats obtenus sont directement liés à la précision et au soin apporté aux opérations de dosage et de mélange. Refermer après dosage les conditionnements afin de préserver l'intégralité des propriétés physico-chimiques des composants.

Nettoyage de l'outillage: MEK, Xylènes, EP 217 ou à défaut Acétone.

Préparation de surface

Le bois sera sec (bois de qualité menuiserie), poncé et dépoussiéré.

L'adhésion de la résine époxy est supérieure sur un bois poncé que sur un bois raboté.

Surfaces déjà traitées à l'époxy: ponçage à sec, dépoussiérage.

Proscrire l'utilisation de solvant gras du type White spirit.

Eviter de souiller les surfaces avant les collages ou revêtements.

Respecter l'ordre des opérations:1- Dégraisser

2- Poncer

3- Dépoussiérer

Imprégnation du bois

Travailler à une température décroissante. Par exemple démarrer la stratification à la mijournée et finir dans l'après-midi, car quand le bois est chaud et sec, l'air contenu dans celui-ci s'expand et sort du bois. Donc si vous stratifiez sur un support tiéde qui refroidit la résine va être aspirée par le bois.

La première couche d'imprégnation peut être diluée avec le diluant EP N° 217.

SR 8450 / SD 8454 1 volume

Diluant **EP 217** 0.5 à 1 volume maximum

Conseil: Faire d'abord le mélange résine / durcisseur, bien mélanger, attendre 5 minutes à 25 °C ou 10 minutes à 15 °C avant de diluer:

Mélanger intimement le diluent et le système pendant 3 minutes Mouiller le support à traiter, l'épaisseur sera la plus fine possible afin de laisser les solvants s'évaporer rapidement. Outillage préconisé: spatule, rouleau à poil court. Attendre environ une demi heure et reprendre les opérations de stratification ou de collage.

Stratification

Les systèmes **SR 8450** sont adaptés à la stratification de fibre de verre sur le bois. L'emploi du tissu de délaminage **PEELTEX** en dernière couche limite les défauts de surface, supprime l'opération de ponçage avant enduit, collage ou reprise de stratification.

Adhérence inter-couches / surcouchage

Travailler "humide sur humide".

L'adhérence inter-couches est optimale lorsque celles-ci sont appliquées avant le temps de hors- poussière (fonction du durcisseur, de la température et de l'humidité). Si le surcouchage ne peut être réalisé dans cet intervalle, il faudra laisser polymériser jusqu'au lendemain et poncer la surface avant d'appliquer une nouvelle couche.

Collages structuraux

Encoller à l'aide d'une spatule ou d'un pinceau.

Le système époxy de collage peut être chargé avec du **Treecell** ou du **Wood Fill 250**, afin d'augmenter sa viscosité et de combler les défauts de surface du bois.

Pour les collages sous contraintes, maintenir sous pression pendant:

36 heures si la température ambiante est de 15 °C

24 heures si la température ambiante est de 18-20°C

16 heures si la température ambiante est de 25 °C.

Les charges s'incorporent toujours <u>après</u> le mélange de la résine et du durcisseur.

8450 / 845x		Treecell		Silicell		Wood Fill 250
1 volume	+	0.5 volume	+	0.2 à 0.5 volume		
ou 1 volume					+	1 volume

Tableau 1- Proportions conseillées de charges pour les collages structuraux à base de SR 8450 / SD 845x

Joint-congé

Le joint-congé permet d'assembler des panneaux, il peut être stratifié à l'aide d'une bande de tissus bi-axial si les efforts structuraux le nécessitent.

- Joint-congé haute densité: incorporer au mélange résine / durcisseur la charge **Wood** Fill 250 ou un mélange **Treecell** / **Silicell**
- Joint congé basse densité: incorporer au mélange résine / durcisseur la charge **Wood** Fill 130 ou un mélange de microsphères creuses / Silicell

SR 8450 / SD 845x		Treecell		Silicell	1	Wood Fill 250	V	Vood Fill 130
1 volume	+	0.5 volume	+	0.2 à 0.5 volume				
ou 1 volume					+	1.5 volume		
ou 1 volume							+	2 à 2.5 volume

Tableau 2- Proportions conseillées de charges pour les joint-congés à base de SR 8450 / SD 845x

Revêtement en parois verticales

2 couches fines de SR 8450 / SD 845x sont préférable à une couche épaisse.

Hygiène et sécurité d'utilisation

Les résines époxydes peuvent être utilisées en toute sécurité en respectant certaines règles et précautions.

Le mélange résine / durcisseur est corrosif et peut irriter la peau ou les yeux en cas de contact.

Le port de gants, lunettes de protection et tenue de travail adaptée est vivement recommandé.

En cas de contact avec les yeux :rincer immédiatement et abondamment avec de l'eau, consulter un spécialiste

En cas de contact avec la peau :laver immédiatement et abondamment avec de l'eau et du savon

Dans un atelier bien aéré et tempéré, la manipulation de résine ne nécessite pas d'appareil respiratoire.

Toutefois, en cas de ventilation insuffisante, de travail en milieu confiné, ou pour les personnes ayant des problèmes respiratoires, il est vivement conseillé de porter un appareil muni d'une cartouche pour vapeurs organiques A2B2 ou d'extraire les vapeurs.

Porter un masque à poussière pour les opérations de ponçage.

Ne pas fumer, boire ou manger dans les zones de préparation et d'application des résines époxydes.

Ne pas se laver les mains avec du solvant.

Lire les consignes sur l'étiquette collée au dos de chaque conditionnement.

Pour de plus amples informations, consulter les fiches d'hygiène et de sécurité complètes de chaque composant.

Nature et fonction des charges

Il est primordial de bien mélanger la résine **SR 8450** aux durcisseurs **SD 845x** avant d'incorporer les charges.

Whitecell: Microsphères de copolymère thermoplastique blanc

Très basse densité apparente. Très basse densité des enduits de finitions. Faible granulométrie. Facilité d'application (onctuosité, homogénéité, lissabilité), aisément ponçable. Idéal pour les constructions hyper-légères, joints-congé à stratifier, enduit de finition avant peinture

Glasscell 10: Microsphères de verre blanche

Version ultra légère du Glasscell 25 pour enduits et finition avant mise en peinture, densification des mousses alvéolaires, collage des bois tendres, mousse syntactique ayant d'excellentes valeurs en compression. Performances mécaniques et inertie chimique, excellent rapport densité / résistance en compression.

Microballons Phénoliques: Microsphères phénoliques de couleur brune

Mélange à la résine plus aisé que le **Whitecell**, ne vole pas. Applications structurelles: Mousses syntactiques, collages, joint-congés de couleur brune se confondant avec le bois, mastic et enduit de finition avant peinture. Facilité d'application (onctuosité, homogénéité, lissabilité) et de ponçabilité. Hygroscopique: maintenir les emballages hermétiquement clos.

Glasscell 25: Microsphères de verre blanche

Facilité de mélange, d'application, meilleure résistance à l'abrasion que les microballons phénoliques. Enduits et finition avant mise en peinture, densification des mousses alvéolaires, collage des bois tendres, mousse syntactique ayant d'excellentes valeurs en compression. Performances mécaniques et inertie chimique, bon rapport densité / résistance en compression.

Fillite: Microsphères de silicate d'aluminium

Facilité de dispersion, bonne dureté et rigidité des moulages. Utilisée pour mastics grossiers, réagréage de surface, isolation thermique et phonique, volumes de remplissage. La meilleure en résistance compression des microsphères creuses, chimiquement inerte, économique.

Agent de thixotropie

Silicell: Silice colloïdale pyrogénée

Agent épaississant et de thixotropie (améliore la tenue en parois verticales). Incorporé dans les systèmes époxydes, il augmente la viscosité, l'adhérence initiale (tack), la vitesse de collage et maintient les charges en suspension pendant la gélification. Hygroscopique: maintenir les emballages hermétiquement clos.

Charges formulées prêtes à l'emploi

Mixfill 30 : Charge pour enduits à poncer

Charge formulée à base de microsphères pour fabrication d'enduits époxy de moyenne granulométrie très facile à poncer. S'utilise en général avec le système **SR 1610 / SD 2613** .Permet de gagner du temps lors des enduits de finition: une seule charge à incorporer, consistance reproductible. Economiquement très intéressant par rapport aux enduits époxydes chargés et prêts à l'emploi. Permet de rattraper des défauts de 3 cm de creux (spatules, longues règles)

L'enduit de finition se fera avec une charge plus tendre telles que le **Mixfill 10**, le **Whitecell** ou les **Microballons phénoliques**.

Mixfill 10: Charge pour enduits à poncer

Tendre, facilité de ponçage, granulométrie fine. Emploi avant les apprêts polyuréthannes ou époxy. Encrase très peu les abrasifs, poussière non collante.

Wood Fill 250 : Charge polyvalente et résistante.

Poudre beige devenant "couleur bois" après mélange avec la résine. S'utilise pour la réalisation de joint-congé "haute densité", densification et le collage du bois.

Wood Fill 130 : Charge polyvalente basse densité

Poudre blanche pour joint-congé de faible densité, mastic, rebouchage.

Fill' Tool: charge dure pour gel-coat d'outillage

Charge formulée grise pour fabrication sur site de gel-coat d'outillage. Augmente la dureté de surface et la résistance à la rayure des matrices époxydes. Sa couleur foncée permet de mieux contrôler le débullage des stratifiés. Thixotropie modulée par la quantité de **Fill'Tool** incorporée

Fill' Tool Alu: pour moule en grenaille d'aluminium

Charge formulée à base de poudre d'aluminium pour fabrication sur site de gel-coat d'outillage. S'utilise avec des coulées de grenaille d'aluminium lorsque le paramètre conduction thermique doit être optimal

Charges diverses:

Treecell: Microfibre de cellulose pure

Poudre blanche pelucheuse. Utilisée en général avec les systèmes époxy pour le bois (**SR 8450**, **SR 5550**) en tant qu'adjuvant structurel. Excellentes propriétés épaississantes et de remplissage des plans de collage du bois et pour les joint-congés haute densité, à combiner avec du **Silicell** pour améliorer le lissage et la thixotropie.

Poudre de graphite

Charge lamellaire noire. Domaines d'applications: résistance chimique, modificateur de friction, propriétés lubrifiantes, réduction de l'usure, résistance aux chocs thermiques, propriétés amortissantes, conductibilité électrique et thermique.

Grenaille aluminium 200-1000 microns

Permet la réalisation d'outillage volumineux ayant une excellente conductivité thermique: thermoformage sous vide ou sous pression. A volume égal et avec un système époxy identique, les masses coulées réalisées avec de la grenaille d'aluminium seront moins exothermiques et plus résistantes en compression que celles réalisées en microsphères creuses.

Dans la réalité du chantier, les charges sont souvent combinées entre elles. Nous donnons les quantités mini-maxi à incorporer, ainsi que les densités obtenables.

Proportions des charges dans la résine

Charges		Poids	Volume	Densité
_	Densité	min. – max	min. – max	maximum des
	apparente	pour 100 g de	pour 100 ml de	mélanges
		R + D	R + D	chargés (g/l)
Whitecell	36	2 - 7	120 - 190	370
Glasscell 10				
Phénoliques	104	7 - 35	60 - 320	500
Glasscell 25	140	5 - 25	30 - 200	600
Fillite	350	30 - 110	85 - 320	730
Mix Fill 30	310	40 - 100	130 - 320	600
Mix Fill 10	100	24-30	240-300	660
Wood Fill 250	250	20 - 80	80 - 320	1080
Wood Fill 130	130	20 - 50	150 - 380	770
Treecell	80	5 - 17	40 - 210	1150
Silicell	50	3 - 9	60 - 180	1170
Fill' tool	930	80 - 200	90 - 210	1800
Fill' tool Alu		60 - 180		1630
Poudre de graphite	415	20 - 70	50 - 170	1360
Grenaille alu 200-1000	1160	100 - 250	90 - 220	1720

Tableau 3-Taux de charge mini-maxi incorporable dans un système de résine ayant une viscosité de 800 Cps à 20°C.

Les charges **SICOMIN** ne constituent pas une base initiatrice aux maladies professionnelles. Cependant, les mêmes précautions que celles concernant la manipulation des poudres et poussières doivent être prises afin d'en éviter l'inhalation.

Les informations que nous donnons par écrit ou verbalement dans le cadre de notre assistance technique et de nos essais n'engagent pas notre responsabilité. Nous conseillons aux utilisateurs des systèmes époxydes SICOMIN, de vérifier par des essais pratiques si nos produits conviennent aux procédés et applications envisagées. L'utilisation, la mise en œuvre et la transformation des produits fournis échappent à notre contrôle et relèvent exclusivement de votre responsabilité.

Si notre responsabilité devait néanmoins se trouver engagée, elle se limiterait, pour tout les dommages, à la valeur de la marchandise fournie par nous et mise en œuvre par vos soins. Nous garantissons la qualité irréprochable de nos produits dans le cadre de nos conditions générales de ventes et de livraison.

^{* :} R+D Mélange Résine et Durcisseur